

A polynomial-time algorithm for the independent set problem in $\{P_{10}, C_4, C_6\}$ -free graphs

Edin Husić and Martin Milanič

June, 2019

Graphs: finite, simple, undirected. *G* is *H*-free if *G* does not contain *H* as *induced* subgraph. *G* is \mathcal{F} -free if *G* is *H*-free for all $H \in \mathcal{F}$. Graphs: finite, simple, undirected. G is H-free if G does not contain H as *induced* subgraph. G is \mathcal{F} -free if G is H-free for all $H \in \mathcal{F}$. Cycle C_k (hole if $k \geq 4$)

Graphs: finite, simple, undirected. G is H-free if G does not contain H as *induced* subgraph. G is \mathcal{F} -free if G is H-free for all $H \in \mathcal{F}$. Cycle C_k (hole if $k \geq 4$), path P_k .

Graphs: finite, simple, undirected. G is H-free if G does not contain H as *induced* subgraph. G is \mathcal{F} -free if G is H-free for all $H \in \mathcal{F}$. Cycle C_k (hole if $k \geq 4$), path P_k .

INDEPENDENT SET:

	Input: Task:	Graph G . Find $\alpha(G)$.
I		

INDEPENDENT SET is NP-hard for:

- ▶ Planar graphs of maximum degree 3, triangle-free graphs.
- \blacktriangleright C₄-free graphs

INDEPENDENT SET is NP-hard for:

- ▶ Planar graphs of maximum degree 3, triangle-free graphs.
- ▶ C_4 -free graphs, or any class of graphs defined by finitely many forbidden induced cycles, i.e., $\{C_{i_1}, \ldots, C_{i_l}\}$ -free graphs.

INDEPENDENT SET is NP-hard for:

- ▶ Planar graphs of maximum degree 3, triangle-free graphs.
- ▶ C_4 -free graphs, or any class of graphs defined by finitely many forbidden induced cycles, i.e., $\{C_{i_1}, \ldots, C_{i_l}\}$ -free graphs.
- *H*-free graphs, unless every component of *H* is a path or subdivision of $K_{1,3}$ (the claw).

INDEPENDENT SET is polynomial-time solvable for:

- ▶ chordal graphs: $\{C_4, C_5, C_6, C_7, \dots\}$ -free [Rose, Tarjan, Lueker],
- ▶ perfect graphs: $\{C_5, \overline{C_5}, C_7, \overline{C_7}, \dots\}$ -free [ellipsoid method, G-L-S], and
- ▶ P₆-free graphs [Grzesik, Klimošová, Pilipczuk²].

INDEPENDENT SET is polynomial-time solvable for:

- ▶ chordal graphs: $\{C_4, C_5, C_6, C_7, \dots\}$ -free [Rose, Tarjan, Lueker],
- ▶ perfect graphs: $\{C_5, \overline{C_5}, C_7, \overline{C_7}, \dots\}$ -free [ellipsoid method, G-L-S], and
- ▶ P₆-free graphs [Grzesik, Klimošová, Pilipczuk²].

The complexity of the problem is **open** for:

- ▶ long-hole-free graphs: $\{C_5, C_6, C_7, ...\}$ -free,
- even-hole-free graphs: $\{C_4, C_6, C_8, \dots\}$ -free (β -perfect), and
- P_k -free graphs when $k \ge 7$.

Proposition

If G is C_4 -free then G is $\{\overline{C_6}, \overline{C_7}, \overline{C_8}, \dots\}$ -free.

Motivation for even hole-free graphs

Proposition

If G is C_4 -free then G is $\{\overline{C_6}, \overline{C_7}, \overline{C_8}, \dots\}$ -free.

• G is ehf then G is $\{C_4, C_6, \overline{C_6}, C_8, \overline{C_8}, \dots\}$ -free. (Perfect = $\{C_5, C_7, \overline{C_7}, C_9, \overline{C_9}, \dots\}$ -free.) Proposition

If G is C_4 -free then G is $\{\overline{C_6}, \overline{C_7}, \overline{C_8}, \dots\}$ -free.

- G is ehf then G is $\{C_4, C_6, \overline{C_6}, C_8, \overline{C_8}, \dots\}$ -free. (Perfect = $\{C_5, C_7, \overline{C_7}, C_9, \overline{C_9}, \dots\}$ -free.)
- even-hole-free graphs are odd signable (balanceable matrices)

Corollary INDEPENDENT SET is polynomial for $\{even-hole, P_{10}\}$ -free graphs. Theorem INDEPENDENT SET is polynomial for $\{P_{10}, C_4, C_6\}$ -free graphs.

Corollary INDEPENDENT SET is polynomial for $\{even-hole, P_{10}\}$ -free graphs.

Theorem (Berge)

A matching is maximum \iff it has no augmenting path.

Theorem (Berge)

A matching is maximum \iff it has no augmenting path.

Theorem (Berge)

A matching is maximum \iff it has no augmenting path.

Definition

An induced bipartite graph

- H = (W, B; E) in G is *augmenting* if
 - $\blacktriangleright W \subseteq I,$
 - $\blacktriangleright B \subseteq V(G) \setminus I,$
 - ▶ |W| < |B| and
 - $\blacktriangleright N(B) \cap I \subseteq W.$

Theorem (Berge)

A matching is maximum \iff it has no augmenting path.

Definition

An induced bipartite graph

- H = (W, B; E) in G is *augmenting* if
 - $\blacktriangleright W \subseteq I,$
 - $\blacktriangleright \ B \subseteq V(G) \setminus I,$
 - ▶ |W| < |B| and
 - $\blacktriangleright N(B) \cap I \subseteq W.$

Theorem (Berge)

A matching is maximum \iff it has no augmenting path.

Definition

An induced bipartite graph

- H = (W, B; E) in G is *augmenting* if
 - $\blacktriangleright W \subseteq I,$
 - $\blacktriangleright \ B \subseteq V(G) \setminus I,$
 - ▶ |W| < |B| and
 - $\blacktriangleright \ N(B) \cap I \subseteq W..$

An independent set I is maximum \iff I admits no augmenting graph.

An independent set I is maximum \iff I admits no augmenting graph.

An algorithm for finding a maximum independent set:

Input: A graph G and an independent set I.

- 1. Check if there I admits augmenting graph:
- 2. If YES, then augment and repeat.
- 3. If NO, then output I.

An independent set I is maximum \iff I admits no augmenting graph.

An algorithm for finding a maximum independent set:

Input: A graph G and an independent set I.

- 1. Check if there I admits augmenting graph:
- 2. If YES, then augment and repeat.
- 3. If NO, then output I.
- ▶ O(n) (time to check if there exists an augmenting graph)
- ▶ "Is there an augmenting graph?" is NP-hard !

An independent set I is maximum \iff I admits no augmenting graph.

An algorithm for finding a maximum independent set:

Input: A graph G and an independent set I.

- 1. Check if there I admits augmenting graph:
- 2. If YES, then augment and repeat.
- 3. If NO, then output I.
- O(n) (time to check if there exists an augmenting graph)
- ▶ "Is there an augmenting graph?" is NP-hard !

But, in special cases the method leads to a polynomial-time algorithm. It suffices to consider only minimal augmenting graphs: connected, |W| + 1 = |B|, degree conditions.

For a polytime algorithm:

- 1. Characterize minimal augmenting graphs in the class.
- 2. Detect if a minimal augmenting graph (of each type) exists.

For a polytime algorithm:

- 1. Characterize minimal augmenting graphs in the class.
- 2. Detect if a minimal augmenting graph (of each type) exists.

We present:

- i) polytime algorithm for the problem in $\{P_9, C_4, C_6\}$ -free graphs, and
- ii) polytime algorithm for the problem in $\{P_{10}, C_4, C_6\}$ -free graphs.

Characterize minimal augmenting $\{P_9, C_4, C_6\}$ graphs

A $\{P_9, C_4, C_6\}$ -free augmenting graph is a tree or contains C_8 .

Characterize minimal augmenting $\{P_9, C_4, C_6\}$ graphs

A $\{P_9, C_4, C_6\}$ -free augmenting graph is a tree or contains C_8 . The minimal ones are:

Characterize minimal augmenting $\{P_9, C_4, C_6\}$ graphs

A $\{P_9, C_4, C_6\}$ -free augmenting graph is a tree or contains C_8 . The minimal ones are:

We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

Fix the root x.

We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$.

We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \notin I : N(v) \cap I = \{w\}\}$

We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \notin I : N(v) \cap I = \{w\}\}$ is a clique.

We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \notin I : N(v) \cap I = \{w\}\}$ is a clique.
We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \notin I : N(v) \cap I = \{w\}\}$ is a clique.

We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \notin I : N(v) \cap I = \{w\}\}$ is a clique. **Claim:** Graph induced by K(w)'s is $\{P_8, C_4, C_6\}$ -free.

We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \notin I : N(v) \cap I = \{w\}\}$ is a clique. **Claim:** Graph induced by K(w)'s is $\{P_8, C_4, C_6\}$ -free.

We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \notin I : N(v) \cap I = \{w\}\}$ is a clique. **Claim:** Graph induced by K(w)'s is $\{P_8, C_4, C_6\}$ -free.

We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \notin I : N(v) \cap I = \{w\}\}$ is a clique. **Claim:** Graph induced by K(w)'s is $\{P_8, C_4, C_6\}$ -free.

We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \notin I : N(v) \cap I = \{w\}\}$ is a clique. **Claim:** Graph induced by K(w)'s is $\{P_8, C_4, C_6\}$ -free.

Find a maximum independent set in the graph induced by the cliques. Polynomial since INDEPENDENT SET is polynomial in $\{P_8, C_4\}$ -free graphs. [Gerber, Hertz, Lozin '03]

We can check in polytime if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_9, C_4, C_6\}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \notin I : N(v) \cap I = \{w\}\}$ is a clique. **Claim:** Graph induced by K(w)'s is $\{P_8, C_4, C_6\}$ -free.

Find a maximum independent set in the graph induced by the cliques. Polynomial since INDEPENDENT SET is polynomial in $\{P_8, C_4\}$ -free graphs. [Gerber, Hertz, Lozin '03]

 $T_{r,s}$ follows similarly. (Easier)

Lemma

If INDEPENDENT SET is polytime solvable for $\{P_{k-1}\} \cup \mathcal{F}$ -free graphs then we can check (in polytime) if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_k\} \cup \mathcal{F}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \setminus I : N(v) \cap I = \{w\}\}$ is a clique.

Claim: Graph induced by K(w)'s is $\{P_{k-1}\} \cup \mathcal{F}$ -free.

Lemma

If INDEPENDENT SET is polytime solvable for $\{P_{k-1}\} \cup \mathcal{F}$ -free graphs then we can check (in polytime) if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_k\} \cup \mathcal{F}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \setminus I : N(v) \cap I = \{w\}\}$ is a clique. **Claim:** Graph induced by K(w)'s is $\{P_{k-1}\} \cup \mathcal{F}$ -free.

Lemma

If INDEPENDENT SET is polytime solvable for $\{P_{k-1}\} \cup \mathcal{F}$ -free graphs then we can check (in polytime) if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_k\} \cup \mathcal{F}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \setminus I : N(v) \cap I = \{w\}\}$ is a clique.

Claim: Graph induced by K(w)'s is $\{P_{k-1}\} \cup \mathcal{F}$ -free.

Lemma

If INDEPENDENT SET is polytime solvable for $\{P_{k-1}\} \cup \mathcal{F}$ -free graphs then we can check (in polytime) if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_k\} \cup \mathcal{F}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \setminus I : N(v) \cap I = \{w\}\}$ is a clique. **Claim:** Graph induced by K(w)'s is $\{P_{k-1}\} \cup \mathcal{F}$ -free.

Lemma

If INDEPENDENT SET is polytime solvable for $\{P_{k-1}\} \cup \mathcal{F}$ -free graphs then we can check (in polytime) if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_k\} \cup \mathcal{F}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \setminus I : N(v) \cap I = \{w\}\}$ is a clique. **Claim:** Graph induced by K(w)'s is $\{P_{k-1}\} \cup \mathcal{F}$ -free.

Lemma

If INDEPENDENT SET is polytime solvable for $\{P_{k-1}\} \cup \mathcal{F}$ -free graphs then we can check (in polytime) if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_k\} \cup \mathcal{F}$ -free graph.

Fix the root x. By definition $N(x) \cap I \subseteq T$. $K(w) = \{v \in N(G) \setminus I : N(v) \cap I = \{w\}\}$ is a clique.

Claim: Graph induced by K(w)'s is $\{P_{k-1}\} \cup \mathcal{F}$ -free.

Theorem

INDEPENDENT SET is polynomially solvable in class of $\{P_9, C_4, C_6\}$ -free graphs.

A $\{P_{10}, C_4, C_6\}$ -free augmenting graph is either a tree, or contains C_8 , or contains C_{10} .

A $\{P_{10}, C_4, C_6\}$ -free augmenting graph is either a tree, or contains C_8 , or contains C_{10} . The minimal augmenting ones are:

Lemma

If INDEPENDENT SET is polytime solvable for $\{P_{k-1}\} \cup \mathcal{F}$ -free graphs then we can check (in polytime) if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_k\} \cup \mathcal{F}$ -free graph.

Set $\mathcal{F} = \{C_4, C_6\}$ and k = 10.

A $\{P_{10}, C_4, C_6\}$ -free augmenting graph is either a tree, or contains C_8 , or contains C_{10} . The minimal augmenting ones are:

Lemma

If INDEPENDENT SET is polytime solvable for $\{P_{k-1}\} \cup \mathcal{F}$ -free graphs then we can check (in polytime) if there exists an augmenting tree of type T_s or $T_{r,s}$ in a $\{P_k\} \cup \mathcal{F}$ -free graph.

Set $\mathcal{F} = \{C_4, C_6\}$ and k = 10.

Goal: Find an augmenting tree of depth 4 containing a fixed P_9 .

Goal: Find an augmenting tree of depth 4 containing a fixed P_9 . By definition, the vertices w', w'', and w_i are in the augmenting graph.

Goal: Find an augmenting tree of depth 4 containing a fixed P_9 . By definition, the vertices w', w'', and w_i are in the augmenting graph. Consider all potential vertices: K(w)'s or B_i 's.

• K(w) is a clique for every w.

Goal: Find an augmenting tree of depth 4 containing a fixed P_9 . By definition, the vertices w', w'', and w_i are in the augmenting graph. Consider all potential vertices: K(w)'s or B_i 's.

 \blacktriangleright K(w) is a clique for every w. Moreover, K(w) is adjacent only to w.

Goal: Find an augmenting tree of depth 4 containing a fixed P_9 . By definition, the vertices w', w'', and w_i are in the augmenting graph. Consider all potential vertices: K(w)'s or B_i 's.

 \blacktriangleright K(w) is a clique for every w. Moreover, K(w) is adjacent only to w.

Goal: Find an augmenting tree of depth 4 containing a fixed P_9 . By definition, the vertices w', w'', and w_i are in the augmenting graph. Consider all potential vertices: K(w)'s or B_i 's.

 \blacktriangleright K(w) is a clique for every w. Moreover, K(w) is adjacent only to w.

Goal: Find an augmenting tree of depth 4 containing a fixed P_9 . By definition, the vertices w', w'', and w_i are in the augmenting graph. Consider all potential vertices: K(w)'s or B_i 's.

▶ K(w) is a clique for every w. Moreover, K(w) is adjacent only to w. \checkmark

- ▶ K(w) is a clique for every w. Moreover, K(w) is adjacent only to w. \checkmark
- ▶ What about B_i 's? Clean $\cup_{i \neq p,q} B_i$.

- ▶ K(w) is a clique for every w. Moreover, K(w) is adjacent only to w. \checkmark
- ▶ What about B_i 's? Clean $\cup_{i \neq p,q} B_i$.

- ▶ K(w) is a clique for every w. Moreover, K(w) is adjacent only to w. \checkmark
- ▶ What about B_i 's? Clean $\bigcup_{i \neq p,q} B_i$. Not necessarily a clique.

- ▶ K(w) is a clique for every w. Moreover, K(w) is adjacent only to w. ✓
- ▶ What about B_i 's? Clean $\bigcup_{i \neq p,q} B_i$. Not necessarily a clique. Take $G[\bigcup_{i \neq p,q} B_i]$ and fill every B_i to a clique.

- ▶ K(w) is a clique for every w. Moreover, K(w) is adjacent only to w. ✓
- ▶ What about B_i's? Clean ∪_{i≠p,q}B_i. Not necessarily a clique. Take G[∪_{i≠p,q}B_i] and fill every B_i to a clique. We obtain a perfect graph.

- ▶ K(w) is a clique for every w. Moreover, K(w) is adjacent only to w. \checkmark
- ▶ What about B_i 's? Clean $\bigcup_{i \neq p,q} B_i$. Not necessarily a clique. Take $G[\bigcup_{i \neq p,q} B_i]$ and fill every B_i to a clique. We obtain a perfect graph.

- ▶ K(w) is a clique for every w. Moreover, K(w) is adjacent only to w. \checkmark
- ▶ What about B_i 's? Clean $\bigcup_{i \neq p,q} B_i$. Not necessarily a clique. Take $G[\bigcup_{i \neq p,q} B_i]$ and fill every B_i to a clique. We obtain a perfect graph.

Thank you for your attention!

