&o I e
p E - .
= L Iy
e _
& ENS DE LYON
Ul\uve\fl‘P

A polynomial-time algorithm for the independent set
problem in {Pjg, Cy, Cg}-free graphs

Edin Husié and Martin Milani¢

June, 2019

LSE

1/16

Hereditary classes of graphs, Independent Set

Graphs: finite, simple, undirected.
G is H-free if G does not contain H as induced subgraph.
G is F-free if G is H-free for all H € F.

2/16

Hereditary classes of graphs, Independent Set

Graphs: finite, simple, undirected.

G is H-free if G does not contain H as induced subgraph.
G is F-free if G is H-free for all H € F.

Cycle Cy, (hole if k > 4)

2/16

Hereditary classes of graphs, Independent Set

Graphs: finite, simple, undirected.

G is H-free if G does not contain H as induced subgraph.
G is F-free if G is H-free for all H € F.

Cycle Cy (hole if k > 4), path Py.

2/16

Hereditary classes of graphs, Independent Set

Graphs: finite, simple, undirected.

G is H-free if G does not contain H as induced subgraph.
G is F-free if G is H-free for all H € F.

Cycle Cy (hole if k > 4), path Py.

INDEPENDENT SET:

Input:
Task:

Graph G.
Find «(G).

2/16

Known hardness results:

INDEPENDENT SET is NP-hard for:
» Planar graphs of maximum degree 3, triangle-free graphs.

» (4-free graphs

3/16

Known hardness results:

INDEPENDENT SET is NP-hard for:
» Planar graphs of maximum degree 3, triangle-free graphs.

» (C4-free graphs, or any class of graphs defined by finitely many
forbidden induced cycles, i.e., {Ci,, ..., C;, }-free graphs.

3/16

Known hardness results:

INDEPENDENT SET is NP-hard for:
» Planar graphs of maximum degree 3, triangle-free graphs.

» (C4-free graphs, or any class of graphs defined by finitely many
forbidden induced cycles, i.e., {Ci,, ..., C;, }-free graphs.

» H-free graphs, unless every component of H is a path or subdivision of
K3 (the claw).

3/16

INDEPENDENT SET is polynomial-time solvable for:
» chordal graphs: {C4,C5,Cs,Cr,... }-free [Rose, Tarjan, Lueker],
> perfect graphs: {Cs,Cs,C7,Cx,. .. }-free [ellipsoid method, G-L-S], and
> Ps-free graphs [Crzesik, Klimosova, Pilipczuk?].

4/16

INDEPENDENT SET is polynomial-time solvable for:
» chordal graphs: {C4,C5,Cs,Cr,... }-free [Rose, Tarjan, Lueker],
> perfect graphs: {Cs,Cs,C7,Cx,. .. }-free [ellipsoid method, G-L-S], and
> Ps-free graphs [Crzesik, Klimosova, Pilipczuk?].

The complexity of the problem is open for:
» long-hole-free graphs: {Cs,Cs, Cr, ... }-free,
> even-hole-free graphs: {Cu,Cs, Cs, ... }-free (B-perfect), and
» Py-free graphs when k > 7.

4/16

Motivation for even hole-free graphs

Proposition
If G is Cy-free then G is {Cs,C7,Cs, . .. }-free.

5/16

Motivation for even hole-free graphs

Proposition
If G is Cy-free then G is {Cs,C7,Cs, . .. }-free.

> G is ehf then G is {C4, Ce,g, Cs,Cs, ... }-free.
(Perfect = {6'57 Cr7,07,09,C9 ... }-free.)

5/16

Motivation for even hole-free graphs

Proposition
If G is Cy-free then G is {Cs,C7,Cs, . .. }-free.

> G is ehf then G is {C4, Ce,g, Cs,Cs, ... }-free.
(Perfect = {05, Cr7,07,09,C9 ... }-free.)
» even-hole-free graphs are odd signable (balanceable matrices)

5/16

Corollary
INDEPENDENT SET is polynomial for {even-hole, Pig}-free graphs.

6/16

Our result

Theorem
INDEPENDENT SET is polynomzial for {Pio,C4s,Ce}-free graphs.

Corollary
INDEPENDENT SET is polynomial for {even-hole, Pig}-free graphs.

6/16

Augmenting Graphs

7/16

Augmenting Graphs

Theorem (Berge)

A matching is mazimum <= it has no augmenting path.

7/16

Augmenting Graphs

Theorem (Berge)

A matching is maximum <= it has no augmenting path.

I V(G)\ I

7/16

Augmenting Graphs

Theorem (Berge)

A matching is maximum <= it has no augmenting path.

Definition
An induced bipartite graph
H = (W, B; E) in G is augmenting if
> WCl,
» BCV(G)\I,
> |W| < |B| and
> N(B)nICW.

7/16

Augmenting Graphs

Theorem (Berge)

A matching is maximum <= it has no augmenting path.

I V(G)\ I

Definition
An induced bipartite graph
H = (W, B; E) in G is augmenting if
> WCl,
» BCV(G)\I,
> |W| < |B| and
> N(B)nICW.

7/16

Augmenting Graphs

Theorem (Berge)

A matching is maximum <= it has no augmenting path.

I V(G)\ I

Definition
An induced bipartite graph
H = (W, B; E) in G is augmenting if
> WCl,
» BCV(G)\I,
> |W| < |B| and
» N(B)nIC W..

7/16

Theorem (Shihi, Minty 1980)

An independent set I is mazimum <= I admits no augmenting graph.

8/ 16

Theorem (Shihi, Minty 1980)

An independent set I is mazimum <= I admits no augmenting graph.

An algorithm for finding a maximum independent set:
Input: A graph G and an independent set I.
1. Check if there I admits augmenting graph:
2. If YEs, then augment and repeat.
3. If NO, then output I.

8/16

Theorem (Shihi, Minty 1980)

An independent set I is mazimum <= I admits no augmenting graph.

An algorithm for finding a maximum independent set:

Input: A graph G and an independent set I.

[

. Check if there I admits augmenting graph:

\V]

. If YES, then augment and repeat.
3. If NO, then output I.

v

O(n)- (time to check if there exists an augmenting graph)

v

“Is there an augmenting graph?” is NP-hard !

8/16

Theorem (Shihi, Minty 1980)

An independent set I is mazimum <= I admits no augmenting graph.

An algorithm for finding a maximum independent set:

Input: A graph G and an independent set I.

[

. Check if there I admits augmenting graph:

\V]

. If YES, then augment and repeat.
3. If NO, then output I.

v

O(n)- (time to check if there exists an augmenting graph)

v

“Is there an augmenting graph?” is NP-hard !

But, in special cases the method leads to a polynomial-time algorithm.
It suffices to consider only minimal augmenting graphs: connected,
|W|+ 1 = |B|, degree conditions.

8/16

Outline

For a polytime algorithm:
1. Characterize minimal augmenting graphs in the class.

2. Detect if a minimal augmenting graph (of each type) exists.

9/16

Outline

For a polytime algorithm:
1. Characterize minimal augmenting graphs in the class.

2. Detect if a minimal augmenting graph (of each type) exists.

We present:
i) polytime algorithm for the problem in {Ps, C4, Cg}-free graphs, and
i7) polytime algorithm for the problem in {Pig, Cs, Cs}-free graphs.

9/16

Characterize minimal augmenting { Py, Cy, Cg} graphs

A {Py, Cy, Cs}-free augmenting graph is a tree or contains Cs.

10/16

Characterize minimal augmenting { Py, Cy, Cg} graphs

A {Py, Cy, Cs}-free augmenting graph is a tree or contains Cs.
The minimal ones are:

AN N

Trees of type Tr,s and Ts.

/\

Augmenting Ps.

10/16

Characterize minimal augmenting { Py, Cy, Cg} graphs

A {Py, Cy, Cs}-free augmenting graph is a tree or contains Cs.
The minimal ones are:

AN N

Trees of type Tr,s and Ts.

Augmenting Ps.v'

10/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a { Py, Cs, Ce}-free graph.

11/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a { Py, Cs, Ce}-free graph.

Fix the root .

11/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a { Py, Cs, Ce}-free graph.

Fix the root z. By definition N(z) NI C T.

11/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a {Py,Ca, Cg}-free graph.

O O

Fix the root z. By definition N(z)NI CT.
Kw)={ve NG)¢gI:Nwv)NnI={w}}

11/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a {Py,Ca, Cg}-free graph.

O O

Fix the root z. By definition N(z)NI CT.
K(w)={ve N(G)¢1I:Nw)NI={w}}is a clique.

11/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a {Py,Cu, Cs}-free graph.

Fix the root z. By definition N(z) NI C T.
Kw)={ve N(G)¢1:N@w)nI={w}}is a clique.

11/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a {Py,Ca, Cg}-free graph.

O O

Fix the root z. By definition N(z)NI CT.
K(w)={ve N(G)¢1I:Nw)NI={w}}is a clique.

11/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a {Py,Ca, Cg}-free graph.

O O

Fix the root z. By definition N(z)NI CT.
K(w)={ve N(G)¢1I:Nw)NI={w}}is a clique.
Claim: Graph induced by K (w)’s is {Ps, C4, C }-free.

11/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a { Py, Cs, Ce}-free graph.

Fix the root z. By definition N(z) NI C T.
Kw)={ve N(G) ¢1I:N(w)NI={w}}is a clique.
Claim: Graph induced by K (w)’s is {Ps, C4, Ce }-free.

11/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a { Py, Cs, Ce}-free graph.

Fix the root z. By definition N(z) NI C T.
Kw)={ve N(G) ¢1I:N(w)NI={w}}is a clique.
Claim: Graph induced by K (w)’s is {Ps, C4, Ce }-free.

11/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a {Py,Ca, Cg}-free graph.

O O

Fix the root z. By definition N(z)NI CT.
K(w)={ve N(G)¢1I:Nw)NI={w}}is a clique.
Claim: Graph induced by K (w)’s is {Ps, C4, C }-free.

11/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a {Py,Ca, Cg}-free graph.

O O

Fix the root z. By definition N(z)NI CT.

K(w)={ve N(G)¢1I:Nw)NI={w}}is a clique.

Claim: Graph induced by K (w)’s is {Ps, C4, C }-free.

Find a maximum independent set in the graph induced by the cliques.

Polynomial since INDEPENDENT SET is polynomial in {Ps, C4}-free graphs.
[Gerber, Hertz, Lozin ’03]

11/16

Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a {Py,Ca, Cg}-free graph.

O O

Fix the root z. By definition N(z)NI CT.
K(w)={ve N(G)¢1I:Nw)NI={w}}is a clique.
Claim: Graph induced by K (w)’s is {Ps, C4, C }-free.

Find a maximum independent set in the graph induced by the cliques.
Polynomial since INDEPENDENT SET is polynomial in {Ps, C4}-free graphs.
[Gerber, Hertz, Lozin ’03]

T, s follows similarly. (Easier)

11/16

More general

Lemma

If INDEPENDENT SET s polytime solvable for {Py_1} U F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or

Trs in a {Px} U F-free graph.

O O

Fix the root z. By definition N(z)NI C T.
K(w)={ve N(G)\I: N(v)NI={w}} is a clique.
Claim: Graph induced by K(w)’s is {Pr—1} U F-free.

Find the maximum independent set in the graph induced by K(w)’s.
Polynomial by assumption.

12 /16

More general

Lemma
If INDEPENDENT SET is polytime solvable for {Py_1} U F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or

Trs in a {Py} U F-free graph.

Fix the root z. By definition N(z)NI CT.
Kw)={ve NG)\I: Nw)nI={w}} is a clique.
Claim: Graph induced by K (w)’s is {Px—1} U F-free.

Find the maximum independent set in the graph induced by K (w)’s.
Polynomial by assumption.

12 /16

More general

Lemma

If INDEPENDENT SET s polytime solvable for {Py_1} U F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or

Trs in a {Px} U F-free graph.

O O

Fix the root z. By definition N(z)NI C T.
K(w)={ve N(G)\I: N(v)NI={w}} is a clique.
Claim: Graph induced by K(w)’s is {Pr—1} U F-free.

Find the maximum independent set in the graph induced by K(w)’s.
Polynomial by assumption.

12 /16

More general

Lemma

If INDEPENDENT SET is polytime solvable for {Py_1} U F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or

Trs in a {Px} U F-free graph.

Fix the root z. By definition N(z)NI CT.
K(w)={ve N(G)\I: N(v)NI={w}} is a clique.
Claim: Graph induced by K(w)’s is {Py—1} U F-free.

Find the maximum independent set in the graph induced by K (w)’s.
Polynomial by assumption.

12 /16

More general

Lemma

If INDEPENDENT SET is polytime solvable for {Py_1} U F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or

Trs in a {Px} U F-free graph.

Fix the root z. By definition N(z)NI CT.
K(w)={ve N(G)\I: N(v)NI={w}} is a clique.
Claim: Graph induced by K(w)’s is {Py—1} U F-free.

Find the maximum independent set in the graph induced by K (w)’s.
Polynomial by assumption.

12 /16

More general

Lemma

If INDEPENDENT SET s polytime solvable for {Py_1} U F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or

Trs in a {Px} U F-free graph.

O O

Fix the root z. By definition N(z)NI C T.
K(w)={ve N(G)\I: N(v)NI={w}} is a clique.
Claim: Graph induced by K(w)’s is {Pr—1} U F-free.

Find the maximum independent set in the graph induced by K(w)’s.
Polynomial by assumption.

12 /16

ANDdm 1 o

Theorem
INDEPENDENT SET is polynomially solvable in class of {Po, C4,Cs}-free
graphs.

13/16

Characterize minimal augmenting { Pyo, Cy4, Cg} graphs

A {Pio, C4, Cs }-free augmenting graph is either a tree, or contains Cg, or
contains Chg.

14 /16

Characterize minimal augmenting { Pyo, Cy4, Cg} graphs

A {Pio, C4, Cs }-free augmenting graph is either a tree, or contains Cg, or
contains C'19. The minimal augmenting ones are:

14 /16

Characterize minimal augmenting { Pyo, Cy4, Cg} graphs

A {Pio, C4, Cs }-free augmenting graph is either a tree, or contains Cg, or
contains C'19. The minimal augmenting ones are:

MmQj&/\/

Trees of type Ty s and Ts.

14 /16

Characterize minimal augmenting { Pyo, Cy4, Cg} graphs

A {Pio, C4, Cs }-free augmenting graph is either a tree, or contains Cg, or
contains C'19. The minimal augmenting ones are:

N A A

Trees of type Ty s and Ts.

“Special” trees of containing Ps.

(a,b,c)-crab.

+ Two particular graphs.v’

14 /16

Characterize minimal augmenting { Pyo, Cy4, Cg} graphs

A {Pio, C4, Cs }-free augmenting graph is either a tree, or contains Cg, or
contains C'19. The minimal augmenting ones are:

MmQj&/\/

Trees of type Ty s and Ts.

Lemma

If INDEPENDENT SET is polytime solvable for {Pi_1} U F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or
Trs in a {Py} U F-free graph.

Set F = {C4,Cs} and k = 10.

14 /16

Characterize minimal augmenting { Pyo, Cy4, Cg} graphs

A {Pio, C4, Cs }-free augmenting graph is either a tree, or contains Cg, or
contains C'19. The minimal augmenting ones are:

MmQj&/\/

Trees of type Ty s and Ts. v

Lemma

If INDEPENDENT SET is polytime solvable for {Pi_1} U F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or
Trs in a {Py} U F-free graph.

Set F = {C4,Cs} and k = 10.

14 /16

Characterize minimal augmenting { Pyo, Cy4, Cg} graphs

A {Pio, C4, Cs }-free augmenting graph is either a tree, or contains Cg, or
contains C'19. The minimal augmenting ones are:

N DA A

Trees of type Ty s and Ts. v

“Special” trees of containing Ps.

(a,b,c)-crab. v

+ Two particular graphs.v’

14 /16

Detecting “special” trees containing Py. (Idea)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.

15/ 16

Detecting “special” trees containing Py. (Idea)

K(w)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

15/16

Detecting “special” trees containing Py. (Idea)

K(w)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

Consider all potential vertices: K (w)’s or B;’s.

» K(w) is a clique for every w.

15/16

Detecting “special” trees containing Py. (Idea)

K(w)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

Consider all potential vertices: K (w)’s or B;’s.

» K(w) is a clique for every w. Moreover, K(w) is adjacent only to w.

15/16

Detecting “special” trees containing Py. (Idea)

K(w)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

Consider all potential vertices: K (w)’s or B;’s.

» K(w) is a clique for every w. Moreover, K(w) is adjacent only to w.

15/16

Detecting “special” trees containing Py. (Idea)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

Consider all potential vertices: K(w)’s or B;’s.

> K(w) is a clique for every w. Moreover, K (w) is adjacent only to w.

15/16

Detecting “special” trees containing Py. (Idea)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

Consider all potential vertices: K (w)’s or B;’s.

> K(w) is a clique for every w. Moreover, K (w) is adjacent only to w. v/

15/16

Detecting “special” trees containing Py. (Idea)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

Consider all potential vertices: K (w)’s or B;’s.

> K(w) is a clique for every w. Moreover, K (w) is adjacent only to w. v/
» What about B;’s? Clean U;xp ¢ B;.

15/ 16

Detecting “special” trees containing Py. (Idea)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

Consider all potential vertices: K (w)’s or B;’s.

> K(w) is a clique for every w. Moreover, K (w) is adjacent only to w. v/
» What about B;’s? Clean U;xp ¢ B;.

15/16

Detecting “special” trees containing Py. (Idea)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

Consider all potential vertices: K (w)’s or B;’s.

> K(w) is a clique for every w. Moreover, K (w) is adjacent only to w. v/

» What about B;’s? Clean U;xp ¢B;. Not necessarily a clique.

15/16

Detecting “special” trees containing Py. (Idea)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

Consider all potential vertices: K (w)’s or B;’s.

> K(w) is a clique for every w. Moreover, K (w) is adjacent only to w. v/

» What about B;’s? Clean U;xp ¢B;. Not necessarily a clique.
Take G[Uixp,qBi] and fill every B; to a clique.

15/16

Detecting “special” trees containing Py. (Idea)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

Consider all potential vertices: K (w)’s or B;’s.

> K(w) is a clique for every w. Moreover, K (w) is adjacent only to w. v/
» What about B;’s? Clean U;xp ¢B;. Not necessarily a clique.

Take G[Uixp,qBi] and fill every B; to a clique.

We obtain a perfect graph.

15/16

Detecting “special” trees containing Py. (Idea)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

Consider all potential vertices: K (w)’s or B;’s.

> K(w) is a clique for every w. Moreover, K (w) is adjacent only to w. v/
» What about B;’s? Clean U;xp ¢B;. Not necessarily a clique.

Take G[U;ixp,qBi] and fill every B; to a clique.

We obtain a perfect graph.

15/ 16

Detecting “special” trees containing Py. (Idea)

Goal: Find an augmenting tree of depth 4 containing a fixed Py.
By definition, the vertices w’, w”, and w; are in the augmenting graph.

Consider all potential vertices: K (w)’s or B;’s.

> K(w) is a clique for every w. Moreover, K (w) is adjacent only to w. v/
» What about B;’s? Clean U;xp ¢B;. Not necessarily a clique.

Take G[U;ixp,qBi] and fill every B; to a clique.

We obtain a perfect graph.

15/ 16

Thank you for your attention!

)

il

=

16 /16

	Introduction
	Minimal Augmenting Graphs

