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Hereditary classes of graphs, Independent Set

Graphs: finite, simple, undirected.
G is H-free if G does not contain H as induced subgraph.
G is F-free if G is H-free for all H ∈ F .

Cycle Ck (hole if k ≥ 4), path Pk.

Independent set:

Input: Graph G.
Task: Find α(G).
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Known hardness results:

Independent Set is NP-hard for:

I Planar graphs of maximum degree 3, triangle-free graphs.

I C4-free graphs

, or any class of graphs defined by finitely many
forbidden induced cycles, i.e., {Ci1 , . . . , Cil}-free graphs.

I H-free graphs, unless every component of H is a path or subdivision of
K1,3 (the claw).
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Independent Set is polynomial-time solvable for:

I chordal graphs: {C4, C5, C6, C7, . . . }-free [Rose, Tarjan, Lueker],

I perfect graphs: {C5, C5, C7, C7, . . . }-free [ellipsoid method, G-L-S], and

I P6-free graphs [Grzesik, Klimošová, Pilipczuk2].

The complexity of the problem is open for:

I long-hole-free graphs: {C5, C6, C7, . . . }-free,

I even-hole-free graphs: {C4, C6, C8, . . . }-free (β-perfect), and

I Pk-free graphs when k ≥ 7.

4 / 16



Independent Set is polynomial-time solvable for:

I chordal graphs: {C4, C5, C6, C7, . . . }-free [Rose, Tarjan, Lueker],

I perfect graphs: {C5, C5, C7, C7, . . . }-free [ellipsoid method, G-L-S], and

I P6-free graphs [Grzesik, Klimošová, Pilipczuk2].
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Motivation for even hole-free graphs

Proposition

If G is C4-free then G is {C6, C7, C8, . . . }-free.

I G is ehf then G is {C4, C6, C6, C8, C8, . . . }-free.
(Perfect = {C5, C7, C7, C9, C9 . . . }-free.)

I even-hole-free graphs are odd signable (balanceable matrices)
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Our result

Theorem
Independent Set is polynomial for {P10, C4, C6}-free graphs.

Corollary

Independent Set is polynomial for {even-hole, P10}-free graphs.
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Augmenting Graphs

Theorem (Berge)

A matching is maximum ⇐⇒ it has no augmenting path.

Definition
An induced bipartite graph
H = (W,B;E) in G is augmenting if
I W ⊆ I,

I B ⊆ V (G) \ I,

I |W | < |B| and

I N(B) ∩ I ⊆W .

.
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Theorem (Sbihi, Minty 1980)

An independent set I is maximum ⇐⇒ I admits no augmenting graph.

An algorithm for finding a maximum independent set:

Input: A graph G and an independent set I.

1. Check if there I admits augmenting graph:

2. If yes, then augment and repeat.

3. If no, then output I.

I O(n)· (time to check if there exists an augmenting graph)

I “Is there an augmenting graph?” is NP-hard !

But, in special cases the method leads to a polynomial-time algorithm.
It suffices to consider only minimal augmenting graphs: connected,
|W |+ 1 = |B|, degree conditions.
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Outline

For a polytime algorithm:

1. Characterize minimal augmenting graphs in the class.

2. Detect if a minimal augmenting graph (of each type) exists.

We present:

i) polytime algorithm for the problem in {P9, C4, C6}-free graphs, and

ii) polytime algorithm for the problem in {P10, C4, C6}-free graphs.
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Characterize minimal augmenting {P9, C4, C6} graphs

A {P9, C4, C6}-free augmenting graph is a tree or contains C8.

The minimal ones are:

Trees of type Tr,s and Ts.

X

Augmenting P3.

X
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Lemma
We can check in polytime if there exists an augmenting tree of type Ts or
Tr,s in a {P9, C4, C6}-free graph.

Fix the root x. By definition N(x) ∩ I ⊆ T .
K(w) = {v ∈ N(G) 6∈ I : N(v) ∩ I = {w}} is a clique.

Claim: Graph induced by K(w)’s is {P8, C4, C6}-free.

Find a maximum independent set in the graph induced by the cliques.
Polynomial since Independent Set is polynomial in {P8, C4}-free graphs.
[Gerber, Hertz, Lozin ’03]

Tr,s follows similarly. (Easier)
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More general

Lemma
If Independent Set is polytime solvable for {Pk−1} ∪ F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or
Tr,s in a {Pk} ∪ F-free graph.

Fix the root x. By definition N(x) ∩ I ⊆ T .
K(w) = {v ∈ N(G) \ I : N(v) ∩ I = {w}} is a clique.

Claim: Graph induced by K(w)’s is {Pk−1} ∪ F-free.

Find the maximum independent set in the graph induced by K(w)’s.
Polynomial by assumption.

12 / 16



More general

Lemma
If Independent Set is polytime solvable for {Pk−1} ∪ F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or
Tr,s in a {Pk} ∪ F-free graph.

Fix the root x. By definition N(x) ∩ I ⊆ T .
K(w) = {v ∈ N(G) \ I : N(v) ∩ I = {w}} is a clique.

Claim: Graph induced by K(w)’s is {Pk−1} ∪ F-free.

Find the maximum independent set in the graph induced by K(w)’s.
Polynomial by assumption.

12 / 16



More general

Lemma
If Independent Set is polytime solvable for {Pk−1} ∪ F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or
Tr,s in a {Pk} ∪ F-free graph.

Fix the root x. By definition N(x) ∩ I ⊆ T .
K(w) = {v ∈ N(G) \ I : N(v) ∩ I = {w}} is a clique.

Claim: Graph induced by K(w)’s is {Pk−1} ∪ F-free.

Find the maximum independent set in the graph induced by K(w)’s.
Polynomial by assumption.

12 / 16



More general

Lemma
If Independent Set is polytime solvable for {Pk−1} ∪ F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or
Tr,s in a {Pk} ∪ F-free graph.

Fix the root x. By definition N(x) ∩ I ⊆ T .
K(w) = {v ∈ N(G) \ I : N(v) ∩ I = {w}} is a clique.

Claim: Graph induced by K(w)’s is {Pk−1} ∪ F-free.

Find the maximum independent set in the graph induced by K(w)’s.
Polynomial by assumption.

12 / 16



More general

Lemma
If Independent Set is polytime solvable for {Pk−1} ∪ F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or
Tr,s in a {Pk} ∪ F-free graph.

Fix the root x. By definition N(x) ∩ I ⊆ T .
K(w) = {v ∈ N(G) \ I : N(v) ∩ I = {w}} is a clique.

Claim: Graph induced by K(w)’s is {Pk−1} ∪ F-free.

Find the maximum independent set in the graph induced by K(w)’s.
Polynomial by assumption.

12 / 16



More general

Lemma
If Independent Set is polytime solvable for {Pk−1} ∪ F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or
Tr,s in a {Pk} ∪ F-free graph.

Fix the root x. By definition N(x) ∩ I ⊆ T .
K(w) = {v ∈ N(G) \ I : N(v) ∩ I = {w}} is a clique.

Claim: Graph induced by K(w)’s is {Pk−1} ∪ F-free.

Find the maximum independent set in the graph induced by K(w)’s.
Polynomial by assumption.

12 / 16



Theorem
Independent Set is polynomially solvable in class of {P9, C4, C6}-free
graphs.
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Characterize minimal augmenting {P10, C4, C6} graphs

A {P10, C4, C6}-free augmenting graph is either a tree, or contains C8, or
contains C10.

The minimal augmenting ones are:

Trees of type Tr,s and Ts.

X

X P3.X
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b = 3

c = 3

(a,b,c)-crab.
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+ Two particular graphs.X
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Detecting “special” trees containing P9. (Idea)

Goal: Find an augmenting tree of depth 4 containing a fixed P9.

By definition, the vertices w′, w′′, and wi are in the augmenting graph.

Consider all potential vertices: K(w)’s or Bi’s.

I K(w) is a clique for every w. Moreover, K(w) is adjacent only to w. X
I What about Bi’s? Clean ∪i6=p,qBi. Not necessarily a clique.

Take G[∪i 6=p,qBi] and fill every Bi to a clique.
We obtain a perfect graph.
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Thank you for your attention!
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