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Hereditary classes of graphs, Independent Set

Graphs: finite, simple, undirected.

G is H-free if G does not contain H as induced subgraph.
G is F-free if G is H-free for all H € F.

Cycle Cy (hole if k > 4), path Py.

INDEPENDENT SET:

Input:
Task:

Graph G.
Find «(G).
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Known hardness results:
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Known hardness results:

INDEPENDENT SET is NP-hard for:
» Planar graphs of maximum degree 3, triangle-free graphs.

» (C4-free graphs, or any class of graphs defined by finitely many
forbidden induced cycles, i.e., {Ci,, ..., C;, }-free graphs.

» H-free graphs, unless every component of H is a path or subdivision of
K3 (the claw).
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INDEPENDENT SET is polynomial-time solvable for:
» chordal graphs: {C4,C5,Cs,Cr,... }-free [Rose, Tarjan, Lueker],
> perfect graphs: {Cs,Cs,C7,Cx,. .. }-free [ellipsoid method, G-L-S], and
> Ps-free graphs [Crzesik, Klimosova, Pilipczuk?].
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INDEPENDENT SET is polynomial-time solvable for:
» chordal graphs: {C4,C5,Cs,Cr,... }-free [Rose, Tarjan, Lueker],
> perfect graphs: {Cs,Cs,C7,Cx,. .. }-free [ellipsoid method, G-L-S], and
> Ps-free graphs [Crzesik, Klimosova, Pilipczuk?].

The complexity of the problem is open for:
» long-hole-free graphs: {Cs,Cs, Cr, ... }-free,
> even-hole-free graphs: {Cu,Cs, Cs, ... }-free (B-perfect), and
» Py-free graphs when k > 7.
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Motivation for even hole-free graphs

Proposition
If G is Cy-free then G is {Cs,C7,Cs, . .. }-free.
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Motivation for even hole-free graphs

Proposition
If G is Cy-free then G is {Cs,C7,Cs, . .. }-free.

> G is ehf then G is {C4, Ce,g, Cs,Cs, ... }-free.
(Perfect = {05, Cr7,07,09,C9 ... }-free.)
» even-hole-free graphs are odd signable (balanceable matrices)
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Corollary
INDEPENDENT SET is polynomial for {even-hole, Pig}-free graphs.
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Our result

Theorem
INDEPENDENT SET is polynomzial for {Pio,C4s,Ce}-free graphs.

Corollary
INDEPENDENT SET is polynomial for {even-hole, Pig}-free graphs.
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Theorem (Shihi, Minty 1980)

An independent set I is mazimum <= I admits no augmenting graph.

An algorithm for finding a maximum independent set:

Input: A graph G and an independent set I.

[

. Check if there I admits augmenting graph:

\V]

. If YES, then augment and repeat.
3. If NO, then output I.

v

O(n)- (time to check if there exists an augmenting graph)

v

“Is there an augmenting graph?” is NP-hard !

But, in special cases the method leads to a polynomial-time algorithm.
It suffices to consider only minimal augmenting graphs: connected,
|W|+ 1 = |B|, degree conditions.
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Outline

For a polytime algorithm:
1. Characterize minimal augmenting graphs in the class.

2. Detect if a minimal augmenting graph (of each type) exists.
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Outline

For a polytime algorithm:
1. Characterize minimal augmenting graphs in the class.

2. Detect if a minimal augmenting graph (of each type) exists.

We present:
i) polytime algorithm for the problem in {Ps, C4, Cg}-free graphs, and
i7) polytime algorithm for the problem in {Pig, Cs, Cs}-free graphs.
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Characterize minimal augmenting { Py, Cy, Cg} graphs

A {Py, Cy, Cs}-free augmenting graph is a tree or contains Cs.
The minimal ones are:

AN N

Trees of type Tr,s and Ts.

Augmenting Ps.v'
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Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a { Py, Cs, Ce}-free graph.
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Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a {Py,Ca, Cg}-free graph.

O O

Fix the root z. By definition N(z)NI CT.

K(w)={ve N(G)¢1I:Nw)NI={w}}is a clique.

Claim: Graph induced by K (w)’s is {Ps, C4, C }-free.

Find a maximum independent set in the graph induced by the cliques.

Polynomial since INDEPENDENT SET is polynomial in {Ps, C4}-free graphs.
[Gerber, Hertz, Lozin ’03]
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Lemma
We can check in polytime if there exists an augmenting tree of type Ts or

Trs in a {Py,Ca, Cg}-free graph.

O O

Fix the root z. By definition N(z)NI CT.
K(w)={ve N(G)¢1I:Nw)NI={w}}is a clique.
Claim: Graph induced by K (w)’s is {Ps, C4, C }-free.

Find a maximum independent set in the graph induced by the cliques.
Polynomial since INDEPENDENT SET is polynomial in {Ps, C4}-free graphs.
[Gerber, Hertz, Lozin ’03]

T, s follows similarly. (Easier)
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More general

Lemma

If INDEPENDENT SET s polytime solvable for {Py_1} U F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or

Trs in a {Px} U F-free graph.

O O

Fix the root z. By definition N(z)NI C T.
K(w)={ve N(G)\I: N(v)NI={w}} is a clique.
Claim: Graph induced by K(w)’s is {Pr—1} U F-free.

Find the maximum independent set in the graph induced by K(w)’s.
Polynomial by assumption.
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Fix the root z. By definition N(z)NI C T.
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Claim: Graph induced by K(w)’s is {Pr—1} U F-free.

Find the maximum independent set in the graph induced by K(w)’s.
Polynomial by assumption.
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ANDdm 1 o

Theorem
INDEPENDENT SET is polynomially solvable in class of {Po, C4,Cs}-free
graphs.
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Characterize minimal augmenting { Pyo, Cy4, Cg} graphs

A {Pio, C4, Cs }-free augmenting graph is either a tree, or contains Cg, or
contains Chg.
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Characterize minimal augmenting { Pyo, Cy4, Cg} graphs

A {Pio, C4, Cs }-free augmenting graph is either a tree, or contains Cg, or
contains C'19. The minimal augmenting ones are:

MmQj&/\/

Trees of type Ty s and Ts.

Lemma

If INDEPENDENT SET is polytime solvable for {Pi_1} U F-free graphs then
we can check (in polytime) if there exists an augmenting tree of type Ts or
Trs in a {Py} U F-free graph.

Set F = {C4,Cs} and k = 10.
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Thank you for your attention!
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