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• Set of  divisible goods . 

• Set of  agents , each with budget .

m G

n A bi

Goal: find prices such that market clears  
supply = demand 

Fisher market

• Supply: wlog there is one unit of each good , 
  .

j ∈ G
∑
i∈A

eij = 1
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Demand and equilibrium

A demand is a function ;   

 is the preferred bundle of an agent  at prices  and budget . 

Di : ℝG+1
+ → ℝG

+

Di(p, bi) i p bi

Definition [Market equilibrium]:  

We say that the prices  and bundles  form a market equilibrium if 

, and 

 with equality whenever , for all .

p ∈ ℝG
+ xi ∈ ℝG

+

xi = Di(p, bi)
n

∑
i=1

xij ≤ 1 pj > 0 j ∈ G
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Bundle = vector of goods.  
Preferred or optimal or demanded.



Tâtonnement

• Informally:   

1. Start with arbitrary prices . 
2. Look at the excess demand (demand - supply) and “fix” the price of a single good:  

          change the price of good  until the demand = supply on good . 
3. Repeat. 

• Dynamics for finding market equilibrium. 
• Proposed by Walras in 1874 after observations of stock market.

p ∈ ℝG
+

j j
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1. Start with arbitrary prices . 
2. Look at the excess demand (demand - supply) and “fix” the price of a single good:  

          change the price of good  until the demand = supply on good . 
3. Repeat. 

• Dynamics for finding market equilibrium. 
• Proposed by Walras in 1874 after observations of stock market.

p ∈ ℝG
+

j j

Intuition. Suppose one price raises. Then we expect that the demand for that good falls.  
Purchasing power is then diverted to the other goods; it is reasonable to assume that demand  
for other goods increases. 

When does it converge? 

“Increasing a price of a good  will increase the demand for other goods ”j G∖{j}
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 (Weak) Gross Substitutes

“Increasing a price of a good  will increase the demand for other goods ”j G∖{j}

Definition [Weak gross substitutes]:  

Consider price vectors  such that  (pointwise).  Demand  of agent  satisfies 
weak gross substitutes property if  

for  and  it holds  whenever . 

GS if strict inequality holds. 

p, q ∈ ℝG
+ p ≤ q Di i

xi = Di(p, bi) yi = Di(q, bi) yij ≥ xij pj = qj
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 (Weak) Gross Substitutes

“Increasing a price of a good  will increase the demand for other goods ”j G∖{j}

Definition [Weak gross substitutes]:  

Consider price vectors  such that  (pointwise).  Demand  of agent  satisfies 
weak gross substitutes property if  

for  and  it holds  whenever . 

GS if strict inequality holds. 

p, q ∈ ℝG
+ p ≤ q Di i

xi = Di(p, bi) yi = Di(q, bi) yij ≥ xij pj = qj

• Introduced by Arrow, Block and Hurwicz in 1958, 1959. 
• They showed that tâttonement converges to an equilibrium if aggregate demand satisfies GS.
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∑
i∈A

Di(p, bi)



 Examples of WGS utilities/demands

Assume agent  is equipped with a concave utility function , then we have i ui : ℝG
+ → ℝ+

Di(p, bi) := Dui(p, bi) := arg max{ui(xi) : p⊤xi ≤ bi, x ≥ 0}

   for m
+u(x) = v⊤x v ∈ ℝG

+

= {x ∈ ℝG :
vj

pj
 is maximum, and p⊤x = b}

Du(p, b) = arg max{v⊤x : p⊤x ≤ b}

Linear (additive) utility Constant elasticity of substitution

u(x) = ∑
j

β
1
σ
j x

σ − 1
σ

j

σ
σ − 1

The Cobb-Douglas utility

  s.t. u(x) = ∏
j

xαj
j ∑

j

αj = 1,αj ≥ 0

  where 

  .

Du(p, b) = x

xj =
βjp−σ

j b

∑k βk p1−σ
k

  where 

  .

Du(p, b) = x

xj = bαj /pj

The demand (utility) is GS iff .σ ≥ 1
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MBB = max
j∈G

vj

pj



• The first polytime algorithm.   Codenotti, Pemmaraju, and Varadarajan [2005] 
• A simple ascending price algorithm.   Bei, Garg, and Hoefer [2019] 
• A discrete variant of tâttonement converges to an approximate equilibrium. 

Codenotti, McCune, and Varadarajan [2005] 
• A lot more…

Complexity of finding an equilibrium?

 For WGS utilities: 

9



• The first polytime algorithm.   Codenotti, Pemmaraju, and Varadarajan [2005] 
• A simple ascending price algorithm.   Bei, Garg, and Hoefer [2019] 
• A discrete variant of tâttonement converges to an approximate equilibrium. 

Codenotti, McCune, and Varadarajan [2005] 
• A lot more…

Complexity of finding an equilibrium?

 For WGS utilities: 

 Outside of WGS: 

• In general, hopeless. Finding equilibria when utilities are “just outside” gross 
substitutability is PPAD-complete.   Chen, Paparas, Yannakakis [2013] 

• Polynomial time algorithms for particular classes of utilities. 
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Auction Algorithms

A subclass of tâttonement where prices only go up. 
Under simple “ground rules” the agents outbid each other and 
converge to an approximate equilibrium. 
Does not require a central authority. 
Robust: small changes allow for various extensions and generalisations. 
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Auction Algorithms

• Auction algorithms for assignment and transportation problems. 
Bertsekas [1981, 1990]. 

• A long history of auction algorithms for markets with indivisible goods. 
Kelso and Crawford [1982], Demange, Gale and Sotomayor [1986]. 

• Auction algorithm for market equilibrium in exchange market with linear utilities. 
Garg and Kapoor [2004] 

• Extended to restricted subclasses of WGS utilities.  
Garg, Kapoor and Vazirani [2004], Garg and Kapoor [2007].  

• Open: Design auction algorithm for whole WGS? 

A subclass of tâttonement where prices only go up. 
Under simple “ground rules” the agents outbid each other and 
converge to an approximate equilibrium. 
Does not require a central authority. 
Robust: small changes allow for various extensions and generalisations. 
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Auction algorithm for finding approximate market equilibria in  
Fisher markets when agents have WGS demands.
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• We maintain market prices  ;  

Increases only by factor  .  

A part  of each good is sold at   , and the rest is sold at  .   
(All goods are fully sold.)

p

(1 + ϵ)

lj > 0 pj (1 + ϵ)pj

Algorithm overview and “ground rules”

Global
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• Agent  maintains individual prices  such that  . 

1. Throughout,    owns a bundle    such that  . 

2. If      agent    pays    for the amount  . 

3. Otherwise, ( ) agent    pays    for .

i p(i) pj ≤ p(i)
j ≤ (1 + ϵ)pj

i ci ci ≤ xi = Di(p(i), bi)

p(i)
j < (1 + ϵ)pj i pj cij

p(i)
j = (1 + ϵ)pj i (1 + ϵ)pj cij



• We maintain market prices  ;  

Increases only by factor  .  

A part  of each good is sold at   , and the rest is sold at  .   
(All goods are fully sold.)

p

(1 + ϵ)

lj > 0 pj (1 + ϵ)pj

Algorithm overview and “ground rules”

Consider the agents one-by-one. If agent has surplus, she will try use it to get more goods by outbidding.

Global

Local for agent
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• Agent  maintains individual prices  such that  . 

1. Throughout,    owns a bundle    such that  . 

2. If      agent    pays    for the amount  . 

3. Otherwise, ( ) agent    pays    for .

i p(i) pj ≤ p(i)
j ≤ (1 + ϵ)pj
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p(i)
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Main ingredient

Throughout,    owns a bundle    such that  .i ci ci ≤ xi = Di(p(i), bi)

FindNewPrices( )  delivers new prices : 

A.     for , and 

B. , where  whenever .               

p(i), c(i), bi p̃

y ≥ ci y = Di(p̃, bi)

p(i) ≤ p̃ ≤ (1 + ϵ)p p̃j = (1 + ϵ)pj yj > (1 + ϵ)cij
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Agent willing to outbid when she wants more 



Main ingredient

Throughout,    owns a bundle    such that  .i ci ci ≤ xi = Di(p(i), bi)

FindNewPrices( )  delivers new prices : 

A.     for , and 

B. , where  whenever .               

p(i), c(i), bi p̃

y ≥ ci y = Di(p̃, bi)

p(i) ≤ p̃ ≤ (1 + ϵ)p p̃j = (1 + ϵ)pj yj > (1 + ϵ)cij

Can be implemented in various ways: 
• Linear (additive) utilities: direct algorithm and/or convex programming approach. 
• CES and Cobb-Douglas: solve a convex program. 
• WGS demands with bounded elasticity: adjustment procedure. 
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Agent willing to outbid when she wants more 



Algorithm: initialisation
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• Initialisation: pick low enough prices so some agents demands all of the goods.   
• Algorithm is partitioned into iterations;  

each iteration finishes when price of a good increases from  to    (when ). 

• An iteration is partitioned into steps:

pj (1 + ϵ)pj lj = 0

If agent has surplus, she will try use it to get more goods by outbidding.



Algorithm: initialisation

20

• Initialisation: pick low enough prices so some agents demands all of the goods.   
• Algorithm is partitioned into iterations;  

each iteration finishes when price of a good increases from  to    (when ). 

• An iteration is partitioned into steps:

pj (1 + ϵ)pj lj = 0

Outbid: pay higher price    to take a part of  currently sold at  . 
 
                Goods change the owner only through the outbid. 

pj(1 + ϵ) j pj

If agent has surplus, she will try use it to get more goods by outbidding.



Algorithm: step of agent i
By invariant  (1)  agent    owns  .     
FindNewPrices( )  delivers new prices : 

A.     for , and 

B. , where  whenever .  

i ci ≤ xi = Di(p(i), bi)
p(i), c(i), bi p̃

y ≥ ci y = Di(p̃, bi)

p(i) ≤ p̃ ≤ (1 + ϵ)p p̃j = (1 + ϵ)pj yj > (1 + ϵ)cij



Algorithm: step of agent i

 and .   
Agent  starts paying  for  instead of .  
Then  outbids up to  and what is available at  from the other agents. 

p(i)
j < (1 + ϵ)pj p̃j = (1 + ϵ)pj

i (1 + ϵ)pj cij pj
i yj pj

•  do the corresponding update:∀j ∈ G
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Algorithm: step of agent i

 and .   
Agent  starts paying  for  instead of .  
Then  outbids up to  and what is available at  from the other agents. 

p(i)
j < (1 + ϵ)pj p̃j = (1 + ϵ)pj

i (1 + ϵ)pj cij pj
i yj pj

 and . 
Agent  keeps paying the higher price  for   
and outbids for she wants  and can.
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Agent either gets  or increases the price of a good!y



Running time

Iterations

In each iteration a price increases by factor .  Price of a good is at most .  

 

At most  prices increases/iterations.

(1 + ϵ) ∑
i∈A

bi

O ( m
ϵ

log
∑i bi

pmin )
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Running time

Iterations

Steps

Consider  consecutive steps — a round. 
 
Assume the price did not increase, agent  in her turn acquired all she wanted through outbid.  
 
As outbid pays  more, the amount of money spent on the goods increases.  
 
Equivalently, the total surplus decreases by factor  in each round. 
 
Eventually, we either finish or increase the price.

n

i

(1 + ϵ)

(1 + ϵ)
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In each iteration a price increases by factor .  Price of a good is at most .  

 

At most  prices increases/iterations.

(1 + ϵ) ∑
i∈A

bi

O ( m
ϵ

log
∑i bi

pmin )



Recap, comments and applications

Auction algorithm for finding approximate market equilibria in exchange markets  
when agents have WGS demands. 

Generalizes to more general exchange markets.  

Generalizes to spending-restricted market equilibria, recently proposed as a relaxation 
of the discrete Nash Social Welfare problem. 

Can be extended to markets where WGS is satisfied only approximately. 
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Thank you!


