
HUSIĆ EDIN

Auction Algorithms for Market Equilibrium
under Weak Gross Substitute Demands

Jugal Garg, Edin Husić, and László Végh

• Set of divisible goods .

• Set of agents , each with budget .

m G

n A bi

Goal: find prices such that market clears
supply = demand

Fisher market

• Supply: wlog there is one unit of each good ,
 .

j ∈ G
∑
i∈A

eij = 1

2

Demand and equilibrium

A demand is a function ;

 is the preferred bundle of an agent at prices and budget .

Di : ℝG+1
+ → ℝG

+

Di(p, bi) i p bi

Definition [Market equilibrium]:

We say that the prices and bundles form a market equilibrium if

, and

 with equality whenever , for all .

p ∈ ℝG
+ xi ∈ ℝG

+

xi = Di(p, bi)
n

∑
i=1

xij ≤ 1 pj > 0 j ∈ G

3

Bundle = vector of goods.
Preferred or optimal or demanded.

Tâtonnement

• Informally:

1. Start with arbitrary prices .
2. Look at the excess demand (demand - supply) and “fix” the price of a single good:

 change the price of good until the demand = supply on good .
3. Repeat.

• Dynamics for finding market equilibrium.
• Proposed by Walras in 1874 after observations of stock market.

p ∈ ℝG
+

j j

4

Tâtonnement

• Informally:

1. Start with arbitrary prices .
2. Look at the excess demand (demand - supply) and “fix” the price of a single good:

 change the price of good until the demand = supply on good .
3. Repeat.

• Dynamics for finding market equilibrium.
• Proposed by Walras in 1874 after observations of stock market.

p ∈ ℝG
+

j j

Intuition. Suppose one price raises. Then we expect that the demand for that good falls.
Purchasing power is then diverted to the other goods; it is reasonable to assume that demand
for other goods increases.

When does it converge?

“Increasing a price of a good will increase the demand for other goods ”j G∖{j}
5

 (Weak) Gross Substitutes

“Increasing a price of a good will increase the demand for other goods ”j G∖{j}

Definition [Weak gross substitutes]:

Consider price vectors such that (pointwise). Demand of agent satisfies
weak gross substitutes property if

for and it holds whenever .

GS if strict inequality holds.

p, q ∈ ℝG
+ p ≤ q Di i

xi = Di(p, bi) yi = Di(q, bi) yij ≥ xij pj = qj

6

 (Weak) Gross Substitutes

“Increasing a price of a good will increase the demand for other goods ”j G∖{j}

Definition [Weak gross substitutes]:

Consider price vectors such that (pointwise). Demand of agent satisfies
weak gross substitutes property if

for and it holds whenever .

GS if strict inequality holds.

p, q ∈ ℝG
+ p ≤ q Di i

xi = Di(p, bi) yi = Di(q, bi) yij ≥ xij pj = qj

• Introduced by Arrow, Block and Hurwicz in 1958, 1959.
• They showed that tâttonement converges to an equilibrium if aggregate demand satisfies GS.

7

∑
i∈A

Di(p, bi)

 Examples of WGS utilities/demands

Assume agent is equipped with a concave utility function , then we have i ui : ℝG
+ → ℝ+

Di(p, bi) := Dui(p, bi) := arg max{ui(xi) : p⊤xi ≤ bi, x ≥ 0}

 for m
+u(x) = v⊤x v ∈ ℝG

+

= {x ∈ ℝG :
vj

pj
 is maximum, and p⊤x = b}

Du(p, b) = arg max{v⊤x : p⊤x ≤ b}

Linear (additive) utility Constant elasticity of substitution

u(x) = ∑
j

β
1
σ
j x

σ − 1
σ

j

σ
σ − 1

The Cobb-Douglas utility

 s.t. u(x) = ∏
j

xαj
j ∑

j

αj = 1,αj ≥ 0

 where

 .

Du(p, b) = x

xj =
βjp−σ

j b

∑k βk p1−σ
k

 where

 .

Du(p, b) = x

xj = bαj /pj

The demand (utility) is GS iff .σ ≥ 1

8

MBB = max
j∈G

vj

pj

• The first polytime algorithm. Codenotti, Pemmaraju, and Varadarajan [2005]
• A simple ascending price algorithm. Bei, Garg, and Hoefer [2019]
• A discrete variant of tâttonement converges to an approximate equilibrium.

Codenotti, McCune, and Varadarajan [2005]
• A lot more…

Complexity of finding an equilibrium?

 For WGS utilities:

9

• The first polytime algorithm. Codenotti, Pemmaraju, and Varadarajan [2005]
• A simple ascending price algorithm. Bei, Garg, and Hoefer [2019]
• A discrete variant of tâttonement converges to an approximate equilibrium.

Codenotti, McCune, and Varadarajan [2005]
• A lot more…

Complexity of finding an equilibrium?

 For WGS utilities:

 Outside of WGS:

• In general, hopeless. Finding equilibria when utilities are “just outside” gross
substitutability is PPAD-complete. Chen, Paparas, Yannakakis [2013]

• Polynomial time algorithms for particular classes of utilities.

10

Auction Algorithms

A subclass of tâttonement where prices only go up.
Under simple “ground rules” the agents outbid each other and
converge to an approximate equilibrium.
Does not require a central authority.
Robust: small changes allow for various extensions and generalisations.

11

Auction Algorithms

• Auction algorithms for assignment and transportation problems.
Bertsekas [1981, 1990].

• A long history of auction algorithms for markets with indivisible goods.
Kelso and Crawford [1982], Demange, Gale and Sotomayor [1986].

• Auction algorithm for market equilibrium in exchange market with linear utilities.
Garg and Kapoor [2004]

• Extended to restricted subclasses of WGS utilities.
Garg, Kapoor and Vazirani [2004], Garg and Kapoor [2007].

• Open: Design auction algorithm for whole WGS?

A subclass of tâttonement where prices only go up.
Under simple “ground rules” the agents outbid each other and
converge to an approximate equilibrium.
Does not require a central authority.
Robust: small changes allow for various extensions and generalisations.

12

Auction algorithm for finding approximate market equilibria in
Fisher markets when agents have WGS demands.

13

• We maintain market prices ;

Increases only by factor .

A part of each good is sold at , and the rest is sold at .
(All goods are fully sold.)

p

(1 + ϵ)

lj > 0 pj (1 + ϵ)pj

Algorithm overview and “ground rules”

Global

14

• We maintain market prices ;

Increases only by factor .

A part of each good is sold at , and the rest is sold at .
(All goods are fully sold.)

p

(1 + ϵ)

lj > 0 pj (1 + ϵ)pj

Algorithm overview and “ground rules”

Global

Local for agent

15

• Agent maintains individual prices such that .

1. Throughout, owns a bundle such that .

2. If agent pays for the amount .

3. Otherwise, () agent pays for .

i p(i) pj ≤ p(i)
j ≤ (1 + ϵ)pj

i ci ci ≤ xi = Di(p(i), bi)

p(i)
j < (1 + ϵ)pj i pj cij

p(i)
j = (1 + ϵ)pj i (1 + ϵ)pj cij

• We maintain market prices ;

Increases only by factor .

A part of each good is sold at , and the rest is sold at .
(All goods are fully sold.)

p

(1 + ϵ)

lj > 0 pj (1 + ϵ)pj

Algorithm overview and “ground rules”

Consider the agents one-by-one. If agent has surplus, she will try use it to get more goods by outbidding.

Global

Local for agent

16

• Agent maintains individual prices such that .

1. Throughout, owns a bundle such that .

2. If agent pays for the amount .

3. Otherwise, () agent pays for .

i p(i) pj ≤ p(i)
j ≤ (1 + ϵ)pj

i ci ci ≤ xi = Di(p(i), bi)

p(i)
j < (1 + ϵ)pj i pj cij

p(i)
j = (1 + ϵ)pj i (1 + ϵ)pj cij

Main ingredient

Throughout, owns a bundle such that .i ci ci ≤ xi = Di(p(i), bi)

FindNewPrices() delivers new prices :

A. for , and

B. , where whenever .

p(i), c(i), bi p̃

y ≥ ci y = Di(p̃, bi)

p(i) ≤ p̃ ≤ (1 + ϵ)p p̃j = (1 + ϵ)pj yj > (1 + ϵ)cij

17

Agent willing to outbid when she wants more

Main ingredient

Throughout, owns a bundle such that .i ci ci ≤ xi = Di(p(i), bi)

FindNewPrices() delivers new prices :

A. for , and

B. , where whenever .

p(i), c(i), bi p̃

y ≥ ci y = Di(p̃, bi)

p(i) ≤ p̃ ≤ (1 + ϵ)p p̃j = (1 + ϵ)pj yj > (1 + ϵ)cij

Can be implemented in various ways:
• Linear (additive) utilities: direct algorithm and/or convex programming approach.
• CES and Cobb-Douglas: solve a convex program.
• WGS demands with bounded elasticity: adjustment procedure.

18

Agent willing to outbid when she wants more

Algorithm: initialisation

19

• Initialisation: pick low enough prices so some agents demands all of the goods.
• Algorithm is partitioned into iterations;

each iteration finishes when price of a good increases from to (when).

• An iteration is partitioned into steps:

pj (1 + ϵ)pj lj = 0

If agent has surplus, she will try use it to get more goods by outbidding.

Algorithm: initialisation

20

• Initialisation: pick low enough prices so some agents demands all of the goods.
• Algorithm is partitioned into iterations;

each iteration finishes when price of a good increases from to (when).

• An iteration is partitioned into steps:

pj (1 + ϵ)pj lj = 0

Outbid: pay higher price to take a part of currently sold at .

 Goods change the owner only through the outbid.

pj(1 + ϵ) j pj

If agent has surplus, she will try use it to get more goods by outbidding.

Algorithm: step of agent i
By invariant (1) agent owns .
FindNewPrices() delivers new prices :

A. for , and

B. , where whenever .

i ci ≤ xi = Di(p(i), bi)
p(i), c(i), bi p̃

y ≥ ci y = Di(p̃, bi)

p(i) ≤ p̃ ≤ (1 + ϵ)p p̃j = (1 + ϵ)pj yj > (1 + ϵ)cij

Algorithm: step of agent i

 and .
Agent starts paying for instead of .
Then outbids up to and what is available at from the other agents.

p(i)
j < (1 + ϵ)pj p̃j = (1 + ϵ)pj

i (1 + ϵ)pj cij pj
i yj pj

• do the corresponding update:∀j ∈ G

By invariant (1) agent owns .
FindNewPrices() delivers new prices :

A. for , and

B. , where whenever .

i ci ≤ xi = Di(p(i), bi)
p(i), c(i), bi p̃

y ≥ ci y = Di(p̃, bi)

p(i) ≤ p̃ ≤ (1 + ϵ)p p̃j = (1 + ϵ)pj yj > (1 + ϵ)cij

Algorithm: step of agent i

 and .
Agent starts paying for instead of .
Then outbids up to and what is available at from the other agents.

p(i)
j < (1 + ϵ)pj p̃j = (1 + ϵ)pj

i (1 + ϵ)pj cij pj
i yj pj

 and .
Agent keeps paying the higher price for
and outbids for she wants and can.

p(i)
j = (1 + ϵ)pj p̃j = (1 + ϵ)pj

i (1 + ϵ)pj cij
yj

• do the corresponding update:∀j ∈ G

By invariant (1) agent owns .
FindNewPrices() delivers new prices :

A. for , and

B. , where whenever .

i ci ≤ xi = Di(p(i), bi)
p(i), c(i), bi p̃

y ≥ ci y = Di(p̃, bi)

p(i) ≤ p̃ ≤ (1 + ϵ)p p̃j = (1 + ϵ)pj yj > (1 + ϵ)cij

Algorithm: step of agent i

 and .
Agent starts paying for instead of .
Then outbids up to and what is available at from the other agents.

p(i)
j < (1 + ϵ)pj p̃j = (1 + ϵ)pj

i (1 + ϵ)pj cij pj
i yj pj

 and .
Agent keeps paying the higher price for
and outbids for she wants and can.

p(i)
j = (1 + ϵ)pj p̃j = (1 + ϵ)pj

i (1 + ϵ)pj cij
yj

 and .
By (B) ; the agent will not seek to buy more of .
p(i)

j < (1 + ϵ)pj p̃j < (1 + ϵ)pj
c(i)

j ≤ yj ≤ (1 + ϵ)c(i)
j j

• do the corresponding update:∀j ∈ G

By invariant (1) agent owns .
FindNewPrices() delivers new prices :

A. for , and

B. , where whenever .

i ci ≤ xi = Di(p(i), bi)
p(i), c(i), bi p̃

y ≥ ci y = Di(p̃, bi)

p(i) ≤ p̃ ≤ (1 + ϵ)p p̃j = (1 + ϵ)pj yj > (1 + ϵ)cij

Algorithm: step of agent i

 and .
Agent starts paying for instead of .
Then outbids up to and what is available at from the other agents.

p(i)
j < (1 + ϵ)pj p̃j = (1 + ϵ)pj

i (1 + ϵ)pj cij pj
i yj pj

 and .
Agent keeps paying the higher price for
and outbids for she wants and can.

p(i)
j = (1 + ϵ)pj p̃j = (1 + ϵ)pj

i (1 + ϵ)pj cij
yj

 and .
By (B) ; the agent will not seek to buy more of .
p(i)

j < (1 + ϵ)pj p̃j < (1 + ϵ)pj
c(i)

j ≤ yj ≤ (1 + ϵ)c(i)
j j

• do the corresponding update:∀j ∈ G

By invariant (1) agent owns .
FindNewPrices() delivers new prices :

A. for , and

B. , where whenever .

i ci ≤ xi = Di(p(i), bi)
p(i), c(i), bi p̃

y ≥ ci y = Di(p̃, bi)

p(i) ≤ p̃ ≤ (1 + ϵ)p p̃j = (1 + ϵ)pj yj > (1 + ϵ)cij

Agent either gets or increases the price of a good!y

Running time

Iterations

In each iteration a price increases by factor . Price of a good is at most .

At most prices increases/iterations.

(1 + ϵ) ∑
i∈A

bi

O (m
ϵ

log
∑i bi

pmin)

26

Running time

Iterations

Steps

Consider consecutive steps — a round.

Assume the price did not increase, agent in her turn acquired all she wanted through outbid.

As outbid pays more, the amount of money spent on the goods increases.

Equivalently, the total surplus decreases by factor in each round.

Eventually, we either finish or increase the price.

n

i

(1 + ϵ)

(1 + ϵ)

27

In each iteration a price increases by factor . Price of a good is at most .

At most prices increases/iterations.

(1 + ϵ) ∑
i∈A

bi

O (m
ϵ

log
∑i bi

pmin)

Recap, comments and applications

Auction algorithm for finding approximate market equilibria in exchange markets
when agents have WGS demands.

Generalizes to more general exchange markets.

Generalizes to spending-restricted market equilibria, recently proposed as a relaxation
of the discrete Nash Social Welfare problem.

Can be extended to markets where WGS is satisfied only approximately.

28

Thank you!

