# Auction Algorithms for Market Equilibrium under Weak Gross Substitute Demands

Jugal Garg, Edin Husić, and László Végh

#### Fisher market

- Set of *m* divisible goods *G*.
- Set of n agents A, each with budget  $b_i$ .

**Goal**: find prices such that market clears supply = demand









• Supply: wlog there is one unit of each good  $j \in G$ ,  $\sum_{i \in A} e_{ij} = 1.$ 

## Demand and equilibrium

A <u>demand</u> is a function  $D_i: \mathbb{R}_+^{G+1} \to \mathbb{R}_+^G$ ;

 $D_i(p,b_i)$  is the preferred bundle of an agent i at prices p and budget  $b_i$ .

Bundle = vector of goods. Preferred or optimal or demanded.

#### Definition [Market equilibrium]:

We say that the prices  $p \in \mathbb{R}_+^G$  and bundles  $x_i \in \mathbb{R}_+^G$  form a market equilibrium if

- $x_i = D_i(p, b_i)$ , and
- $\sum_{i=1}^{n} x_{ij} \le 1 \text{ with equality whenever } p_j > 0 \text{, for all } j \in G.$

#### Tâtonnement

- Informally:
  - 1. Start with arbitrary prices  $p \in \mathbb{R}_+^G$ .
  - 2. Look at the excess demand (demand supply) and "fix" the price of a single good: change the price of good j until the demand = supply on good j.
  - 3. Repeat.
- Dynamics for finding market equilibrium.
- Proposed by Walras in 1874 after observations of stock market.

#### Tâtonnement

- Informally:
  - 1. Start with arbitrary prices  $p \in \mathbb{R}_+^G$ .
  - 2. Look at the excess demand (demand supply) and "fix" the price of a single good: change the price of good j until the demand = supply on good j.
  - 3. Repeat.
- Dynamics for finding market equilibrium.
- Proposed by Walras in 1874 after observations of stock market.

#### When does it converge?

Intuition. Suppose one price raises. Then we expect that the demand for that good falls.

Purchasing power is then diverted to the other goods; it is reasonable to assume that demand for other goods increases.

"Increasing a price of a good j will increase the demand for other goods  $G \setminus \{j\}$ "

#### (Weak) Gross Substitutes

"Increasing a price of a good j will increase the demand for other goods  $G \setminus \{j\}$ "

#### Definition [Weak gross substitutes]:

Consider price vectors  $p, q \in \mathbb{R}_+^G$  such that  $p \leq q$  (pointwise). Demand  $D_i$  of agent i satisfies weak gross substitutes property if

for 
$$x_i = D_i(p, b_i)$$
 and  $y_i = D_i(q, b_i)$  it holds  $y_{ij} \ge x_{ij}$  whenever  $p_j = q_j$ .

**GS** if strict inequality holds.

#### (Weak) Gross Substitutes

"Increasing a price of a good j will increase the demand for other goods  $G \setminus \{j\}$ "

#### Definition [Weak gross substitutes]:

Consider price vectors  $p, q \in \mathbb{R}_+^G$  such that  $p \leq q$  (pointwise). Demand  $D_i$  of agent i satisfies weak gross substitutes property if

for 
$$x_i = D_i(p, b_i)$$
 and  $y_i = D_i(q, b_i)$  it holds  $y_{ij} \ge x_{ij}$  whenever  $p_i = q_i$ .

**GS** if strict inequality holds.

- Introduced by Arrow, Block and Hurwicz in 1958, 1959.
- They showed that tâttonement converges to an equilibrium if <u>aggregate</u> demand satisfies **GS**.

$$\sum_{i \in A} D_i(p, b_i)$$

## Examples of WGS utilities/demands

Assume agent i is equipped with a concave utility function  $u_i: \mathbb{R}_+^G \to \mathbb{R}_+$ , then we have

$$D_i(p, b_i) := D^{u_i}(p, b_i) := \arg\max\{u_i(x_i) : p^{\mathsf{T}}x_i \le b_i, x \ge 0\}$$

#### Linear (additive) utility

$$u(x) = v^{\mathsf{T}} x \text{ for } v \in \mathbb{R}^{G_{+}}$$

$$D^{u}(p,b) = \arg \max\{v^{\top}x : p^{\top}x \le b\}$$

$$= \{x \in \mathbb{R}^{G} : \frac{v_{j}}{p_{i}} \text{ is maximum, and } p^{\top}x = b\}$$

$$MBB = \max_{j \in G} \frac{v_{j}}{p_{i}}$$

#### Constant elasticity of substitution

$$u(x) = \left(\sum_{j} \beta_{j}^{\frac{1}{\sigma}} x_{j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

$$D^{u}(p,b) = x$$
 where

$$x_j = \frac{\beta_j p_j^{-\sigma} b}{\sum_k \beta_k p_k^{1-\sigma}}.$$

The demand (utility) is GS iff  $\sigma \geq 1$ .

#### The Cobb-Douglas utility

$$u(x) = \prod_{j} x_j^{\alpha_j} \text{ s.t. } \sum_{j} \alpha_j = 1, \alpha_j \ge 0$$

$$D^{u}(p,b) = x$$
 where  $x_{i} = b\alpha_{i}/p_{i}$ .

## Complexity of finding an equilibrium?

#### For WGS utilities:

- The first polytime algorithm. Codenotti, Pemmaraju, and Varadarajan [2005]
- A simple ascending price algorithm. Bei, Garg, and Hoefer [2019]
- A discrete variant of tâttonement converges to an approximate equilibrium. Codenotti, McCune, and Varadarajan [2005]
- A lot more...

## Complexity of finding an equilibrium?

#### For WGS utilities:

- The first polytime algorithm. Codenotti, Pemmaraju, and Varadarajan [2005]
- A simple ascending price algorithm. Bei, Garg, and Hoefer [2019]
- A discrete variant of tâttonement converges to an approximate equilibrium. Codenotti, McCune, and Varadarajan [2005]
- A lot more...

#### Outside of WGS:

- In general, hopeless. Finding equilibria when utilities are "just outside" gross substitutability is PPAD-complete. Chen, Paparas, Yannakakis [2013]
- Polynomial time algorithms for particular classes of utilities.

#### Auction Algorithms

- A subclass of tâttonement where prices only go up.
- Under simple "ground rules" the agents outbid each other and converge to an approximate equilibrium.
- Does not require a central authority.
- Robust: small changes allow for various extensions and generalisations.

#### Auction Algorithms

- A subclass of tâttonement where prices only go up.
- Under simple "ground rules" the agents outbid each other and converge to an approximate equilibrium.
- Does not require a central authority.
- Robust: small changes allow for various extensions and generalisations.
  - Auction algorithms for <u>assignment</u> and <u>transportation</u> problems. Bertsekas [1981, 1990].
  - A long history of auction algorithms for markets with *indivisible goods*. Kelso and Crawford [1982], Demange, Gale and Sotomayor [1986].
  - Auction algorithm for market equilibrium in exchange market with <u>linear utilities</u>. Garg and Kapoor [2004]
  - Extended to *restricted* subclasses of WGS utilities. Garg, Kapoor and Vazirani [2004], Garg and Kapoor [2007].
  - Open: Design auction algorithm for whole WGS?

Auction algorithm for finding approximate market equilibria in Fisher markets when agents have WGS demands.

## Algorithm overview and "ground rules"

- We maintain market prices p;
  - ▶ Increases only by factor  $(1 + \epsilon)$ .

Global

A part  $l_j > 0$  of each good is sold at  $p_j$ , and the rest is sold at  $(1 + \epsilon)p_j$ . (All goods are fully sold.)

## Algorithm overview and "ground rules"

- We maintain market prices p;
  - ▶ Increases only by factor  $(1 + \epsilon)$ .

Global

- A part  $l_j > 0$  of each good is sold at  $p_j$ , and the rest is sold at  $(1 + \epsilon)p_j$ . (All goods are fully sold.)
- Agent i maintains individual prices  $p^{(i)}$  such that  $p_j \le p_j^{(i)} \le (1 + \epsilon)p_j$ .
  - 1. Throughout, i owns a bundle  $c_i$  such that  $c_i \le x_i = D_i(p^{(i)}, b_i)$ .
  - 2. If  $p_j^{(i)} < (1 + \epsilon)p_j$  agent i pays  $p_j$  for the amount  $c_{ij}$ .
  - 3. Otherwise,  $(p_j^{(i)} = (1 + \epsilon)p_j)$  agent i pays  $(1 + \epsilon)p_j$  for  $c_{ij}$ .

Local for agent

## Algorithm overview and "ground rules"

- We maintain market prices p;
  - ▶ Increases only by factor  $(1 + \epsilon)$ .

Global

- A part  $l_j > 0$  of each good is sold at  $p_j$ , and the rest is sold at  $(1 + \epsilon)p_j$ . (All goods are fully sold.)
- Agent i maintains individual prices  $p^{(i)}$  such that  $p_j \le p_j^{(i)} \le (1 + \epsilon)p_j$ .
  - 1. Throughout, i owns a bundle  $c_i$  such that  $c_i \le x_i = D_i(p^{(i)}, b_i)$ .
  - 2. If  $p_i^{(i)} < (1 + \epsilon)p_j$  agent i pays  $p_j$  for the amount  $c_{ij}$ .
  - 3. Otherwise,  $(p_j^{(i)} = (1 + \epsilon)p_j)$  agent i pays  $(1 + \epsilon)p_j$  for  $c_{ij}$ .

Local for agent

Consider the agents one-by-one. If agent has surplus, she will try use it to get more goods by outbidding.

## Main ingredient

Throughout, i owns a bundle  $c_i$  such that  $c_i \le x_i = D_i(p^{(i)}, b_i)$ .

FindNewPrices( $p^{(i)}, c^{(i)}, b_i$ ) delivers new prices  $\tilde{p}$ :

A. 
$$y \ge c_i$$
 for  $y = D_i(\tilde{p}, b_i)$ , and

B. 
$$p^{(i)} \le \tilde{p} \le (1 + \epsilon)p$$
, where  $\tilde{p}_j = (1 + \epsilon)p_j$  whenever  $y_j > (1 + \epsilon)c_{ij}$ .

Agent willing to outbid when she wants more

## Main ingredient

Throughout, i owns a bundle  $c_i$  such that  $c_i \le x_i = D_i(p^{(i)}, b_i)$ .

FindNewPrices( $p^{(i)}, c^{(i)}, b_i$ ) delivers new prices  $\tilde{p}$ :

A. 
$$y \ge c_i$$
 for  $y = D_i(\tilde{p}, b_i)$ , and

B. 
$$p^{(i)} \le \tilde{p} \le (1 + \epsilon)p$$
, where  $\tilde{p}_j = (1 + \epsilon)p_j$  whenever  $y_j > (1 + \epsilon)c_{ij}$ .

Agent willing to outbid when she wants more

#### Can be implemented in various ways:

- Linear (additive) utilities: direct algorithm and/or convex programming approach.
- CES and Cobb-Douglas: solve a convex program.
- WGS demands with bounded elasticity: adjustment procedure.

#### Algorithm: initialisation

- Initialisation: pick low enough prices so some agents demands all of the goods.
- Algorithm is partitioned into **iterations**; each iteration finishes when price of a good increases from  $p_i$  to  $(1 + \epsilon)p_i$  (when  $l_i = 0$ ).
- An iteration is partitioned into steps:

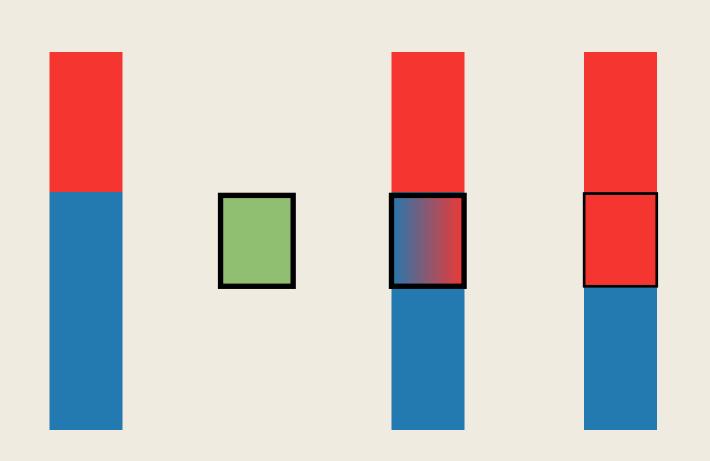
If agent has surplus, she will try use it to get more goods by outbidding.

## Algorithm: initialisation

- Initialisation: pick low enough prices so some agents demands all of the goods.
- Algorithm is partitioned into **iterations**; each iteration finishes when price of a good increases from  $p_i$  to  $(1 + \epsilon)p_i$  (when  $l_i = 0$ ).
- An iteration is partitioned into steps:

If agent has surplus, she will try use it to get more goods by outbidding.

**Outbid**: pay higher price  $p_j(1+\epsilon)$  to take a part of j currently sold at  $p_j$ . Goods change the owner only through the outbid.



A. 
$$y \ge c_i$$
 for  $y = D_i(\tilde{p}, b_i)$ , and

B. 
$$p^{(i)} \le \tilde{p} \le (1 + \epsilon)p$$
, where  $\tilde{p}_j = (1 + \epsilon)p_j$  whenever  $y_j > (1 + \epsilon)c_{ij}$ .

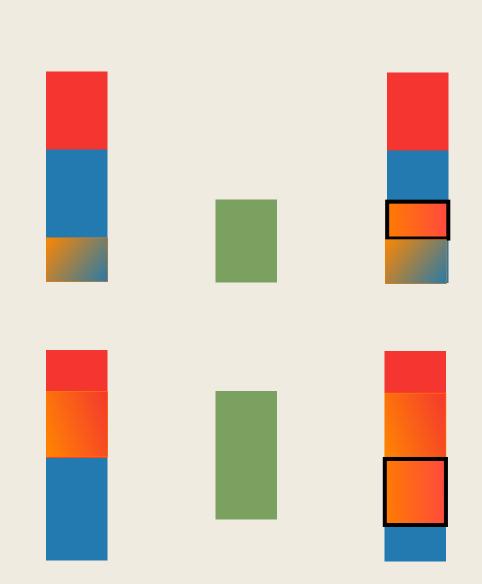
- A.  $y \ge c_i$  for  $y = D_i(\tilde{p}, b_i)$ , and
- B.  $p^{(i)} \le \tilde{p} \le (1 + \epsilon)p$ , where  $\tilde{p}_j = (1 + \epsilon)p_j$  whenever  $y_j > (1 + \epsilon)c_{ij}$ .
- $\forall j \in G$  do the corresponding update:
  - +  $p_j^{(i)} < (1+\epsilon)p_j$  and  $\tilde{p}_j = (1+\epsilon)p_j$ . Agent i starts paying  $(1+\epsilon)p_j$  for  $c_{ij}$  instead of  $p_j$ . Then i outbids up to  $y_j$  and what is available at  $p_j$  from the other agents.



A. 
$$y \ge c_i$$
 for  $y = D_i(\tilde{p}, b_i)$ , and

B. 
$$p^{(i)} \le \tilde{p} \le (1 + \epsilon)p$$
, where  $\tilde{p}_j = (1 + \epsilon)p_j$  whenever  $y_j > (1 + \epsilon)c_{ij}$ .

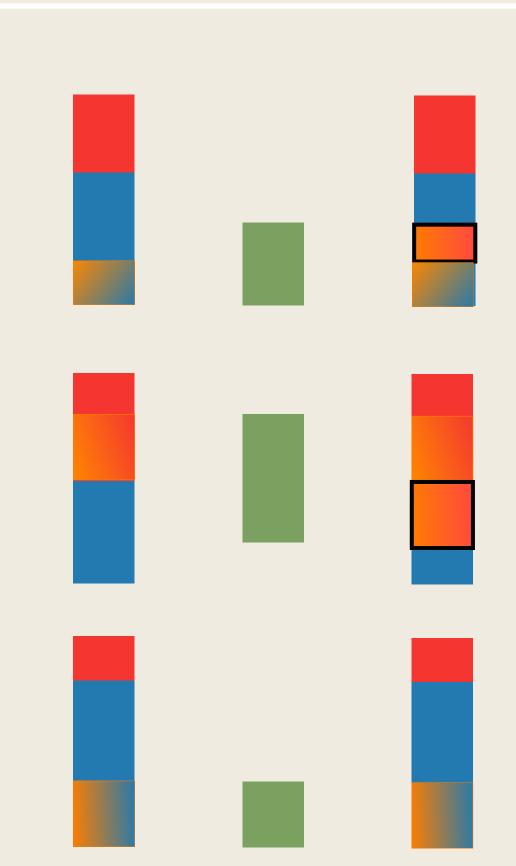
- $\forall j \in G$  do the corresponding update:
  - +  $p_j^{(i)} < (1+\epsilon)p_j$  and  $\tilde{p}_j = (1+\epsilon)p_j$ . Agent i starts paying  $(1+\epsilon)p_j$  for  $c_{ij}$  instead of  $p_j$ . Then i outbids up to  $y_j$  and what is available at  $p_j$  from the other agents.
  - +  $p_j^{(i)} = (1 + \epsilon)p_j$  and  $\tilde{p}_j = (1 + \epsilon)p_j$ . Agent i keeps paying the higher price  $(1 + \epsilon)p_j$  for  $c_{ij}$  and outbids for she wants  $y_i$  and can.



A. 
$$y \ge c_i$$
 for  $y = D_i(\tilde{p}, b_i)$ , and

B. 
$$p^{(i)} \le \tilde{p} \le (1 + \epsilon)p$$
, where  $\tilde{p}_j = (1 + \epsilon)p_j$  whenever  $y_j > (1 + \epsilon)c_{ij}$ .

- $\forall j \in G$  do the corresponding update:
  - +  $p_j^{(i)} < (1+\epsilon)p_j$  and  $\tilde{p}_j = (1+\epsilon)p_j$ . Agent i starts paying  $(1+\epsilon)p_j$  for  $c_{ij}$  instead of  $p_j$ . Then i outbids up to  $y_i$  and what is available at  $p_i$  from the other agents.
  - +  $p_j^{(i)} = (1 + \epsilon)p_j$  and  $\tilde{p}_j = (1 + \epsilon)p_j$ . Agent i keeps paying the higher price  $(1 + \epsilon)p_j$  for  $c_{ij}$  and outbids for she wants  $y_j$  and can.
  - +  $p_j^{(i)} < (1+\epsilon)p_j$  and  $\tilde{p}_j < (1+\epsilon)p_j$ . By (B)  $c_j^{(i)} \le y_j \le (1+\epsilon)c_j^{(i)}$ ; the agent will not seek to buy more of j.

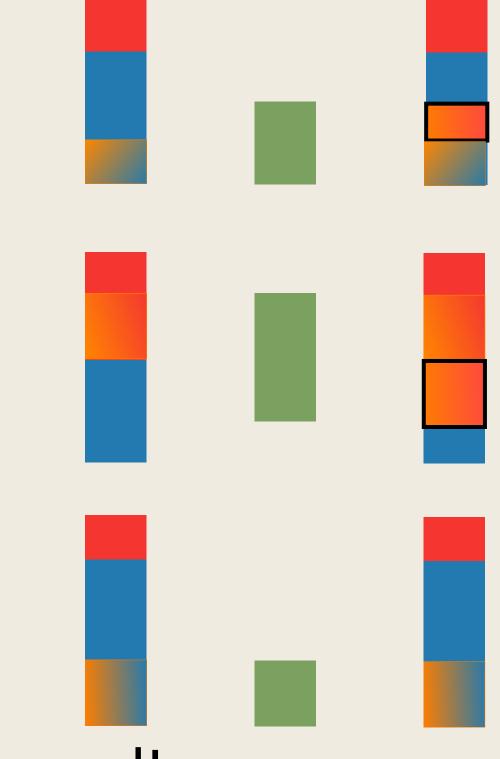


By invariant (1) agent 
$$i$$
 owns  $c_i \le x_i = D_i(p^{(i)}, b_i)$ . FindNewPrices $(p^{(i)}, c^{(i)}, b_i)$  delivers new prices  $\tilde{p}$ :

A. 
$$y \ge c_i$$
 for  $y = D_i(\tilde{p}, b_i)$ , and

B. 
$$p^{(i)} \le \tilde{p} \le (1 + \epsilon)p$$
, where  $\tilde{p}_j = (1 + \epsilon)p_j$  whenever  $y_j > (1 + \epsilon)c_{ij}$ .

- $\forall j \in G$  do the corresponding update:
  - +  $p_j^{(i)} < (1+\epsilon)p_j$  and  $\tilde{p}_j = (1+\epsilon)p_j$ . Agent i starts paying  $(1+\epsilon)p_j$  for  $c_{ij}$  instead of  $p_j$ . Then i outbids up to  $y_j$  and what is available at  $p_j$  from the other agents.
  - +  $p_j^{(i)} = (1 + \epsilon)p_j$  and  $\tilde{p}_j = (1 + \epsilon)p_j$ . Agent i keeps paying the higher price  $(1 + \epsilon)p_j$  for  $c_{ij}$  and outbids for she wants  $y_i$  and can.
  - +  $p_j^{(i)} < (1+\epsilon)p_j$  and  $\tilde{p}_j < (1+\epsilon)p_j$ . By (B)  $c_j^{(i)} \le y_j \le (1+\epsilon)c_j^{(i)}$ ; the agent will not seek to buy more of j.



Agent either gets y or increases the price of a good!

#### Running time

In each iteration a price increases by factor  $(1 + \epsilon)$ . Price of a good is at most  $\sum_{i \in A} b_i$ .

#### Iterations

At most 
$$O\left(\frac{m}{\epsilon}\log\frac{\sum_i b_i}{p_{\min}}\right)$$
 prices increases/iterations.

#### Running time

In each iteration a price increases by factor  $(1 + \epsilon)$ . Price of a good is at most  $\sum_{i \in A} b_i$ .

#### **Iterations**

At most 
$$O\left(\frac{m}{\epsilon}\log\frac{\sum_i b_i}{p_{\min}}\right)$$
 prices increases/iterations.

Consider n consecutive steps – a round.

Assume the price did not increase, agent i in her turn acquired all she wanted through outbid.

#### Steps

As outbid pays  $(1 + \epsilon)$  more, the amount of money spent on the goods increases.

Equivalently, the total surplus decreases by factor  $(1 + \epsilon)$  in each round.

Eventually, we either finish or increase the price.

## Recap, comments and applications

- \* Auction algorithm for finding approximate market equilibria in exchange markets when agents have WGS demands.
- \* Generalizes to more general exchange markets.
- \* Generalizes to **spending-restricted** market equilibria, recently proposed as a relaxation of the discrete Nash Social Welfare problem.
- \* Can be extended to markets where WGS is satisfied only approximately.

## Thank you!